UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA
"LUCHAR PARA LOGRAR, LOGRAR PARA DAR"

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

Clave:

Clave: FACULTAD DE INGENIERÍA

COMPUTACIÓN

DES:	Ingeniería					
Programa(a) Educativa(a):	Maestría en Ciencias					
Programa(s) Educativo(s):	Básicas y Aplicadas					
Tipo de materia:	Obligatoria					
Clave de la materia:	MCBAOP101					
Semestre:	Primero					
Área en plan de estudios:	Específica					
Créditos	5					
Total de horas por semana:	5					
Teoría:	5					
Práctica						
Taller:						
Laboratorio:						
Prácticas complementarias:						
Trabajo extra clase:	1					
Total de horas semestre:	80					
Fecha de actualización:	Febrero 2016					
Materia requisito:	Ninguna					

PROPÓSITO DEL CURSO

Que el alumno defina y analice el tipo de problemas que pueden o no pueden ser resueltos por una computadora bajo términos formales. Asocia el concepto de máquina abstracta y codificación de los problemas. Conoce y describe los problemas indecidibles. Simula el comportamiento de las máquinas abstractas básicas inmersas en la teoría de la computación. Manifiesta valores y actitudes, como el respeto a las ideas de otros, responsabilidad de su aprendizaje, disciplina en el aula, cooperación, criticidad y creatividad con carácter científico a través del trabajo en equipo. Comunica en forma oral y escrita sus ideas e interpretaciones, respecto a las máquinas abstractas estudiadas, así como expone juicios de valor respecto a la relación que estos guardan con su vida y el mundo que le rodea.

materia y a las que contribuye)	DOMINIOS COGNITIVOS (Objetos de estudio, temas y subtemas)	RESULTADOS DE APRENDIZAJE. (Por objeto de estudio).
Gestión del conocimiento: Demuestra conocimientos y habilidades para la búsqueda, análisis crítico, síntesis y procesamiento de información para su transformación	1.1 Expresiones regulares. 1.2 Autómatas finitos deterministas. 1.3 Autómatas finitos no deterministas. 1.4 Variantes de los autómatas finitos. 1.5 Propiedades de los lenguajes regulares.	Analiza y compara los diferentes tipos de autómatas finitos. Construye modelos teóricos de autómatas finitos como representaciones de ciertos fenómenos.

a partir de definir problemas de información relevante. **ESPECÍFICAS:** Modelación y simulación matemática Modela sistemas dinámicos mediante simulaciones matemáticas para generar predicciones de comportamiento aue contribuyen a la solución de problemas de contexto considerando distintos escenarios de forma honesta y responsable Clasifica problemas de sistemas complejos que pueden ser modelados matemáticamente. Plantea métodos matemáticos y computacionales de solución de forma responsable y ética. Determina soluciones particulares del sistema complejo en tiempos razonables. Deduce comportamientos del sistema complejo por medio de simulaciones computacionales y matemáticas de forma honesta y responsable. II. LENGUAJES LIBRES DE CONTEXTO Analiza y diseña gramáticas Y AUTÓMATAS DE PILA independientes del contexto para construir lenguajes. 2.1 Gramáticas independientes del contexto. Construye modelos de 2.2 Árboles de análisis y ambigüedad. autómatas de pila 2.3 Autómatas de pila. deterministas y no 2.4 Propiedades de los lenguajes deterministas. independientes del contexto. Contrasta las diferencias entre los autómatas finitos y los autómatas de pila.

III. DECIDIBILIDAD

3.1 M	odelo bá	sico	de	las	máquinas de
Turing.					

3.2 Problemas de decisión.

3.3 Esquemas de codificación para los problemas.

3.4 Problemas indecidibles.

3.5 Teorema de Rice.

Asocia los modelos de máquinas de Turing con problemas codificados.

Analiza problemas indecidibles.

OBJETO DE ESTUDIO	METODOLOGÍA (Estrategias, secuencias, recursos didácticos)	EVIDENCIAS DE APRENDIZAJE.
I. Lenguajes regulares y autómatas finitos.	 Aprendizaje interactivo (exposición del profesor) Investigación de tópicos. Se divide el grupo para búsqueda y análisis de la información. Demostraciones formales. 	 Pseudo-códigos Problemas resueltos Demostraciones formales.
II. Lenguajes libres de contexto y autómatas de pila.	 Aprendizaje interactivo (exposición del profesor) Investigación de tópicos. Se divide el grupo para búsqueda y análisis de la información. Demostraciones formales. 	 Pseudo-códigos Problemas resueltos Demostraciones formales.
III. Decidibilidad.	 Aprendizaje interactivo (exposición del profesor) Investigación de tópicos. Se divide el grupo para búsqueda y análisis de la información. Demostraciones formales. Material de Apoyo didáctico: Recursos Literatura citada en el programa del curso. Materiales gráficos: artículos y libros, entre otros 	 Pseudo-códigos Problemas resueltos Demostraciones formales.

	Cañón.Pizarrón, pintarrones.	
--	---	--

	FUENTES DE INFORMACIÓN (Bibliografía, Direcciones electrónicas)	EVALUACIÓN DE LOS APRENDIZAJES (Criterios e instrumentos)
	(Bibliografia, Direcciones electronicas)	INSTRUMENTOS:
	Kelley, D., Aguilar, L. J., & Platas, M. L. D. (1995). <i>Teoría de autómatas y lenguajes formales</i> (Vol. 22). Prentice Hall. Sipser, M. (2012). <i>Introduction to the Theory of</i>	Examen escrito Solución de problemas Programas computacionles(Pseudo-código)
	Computation. Cengage Learning	CRITERIOS DE DESEMPEÑO:
3.	Hopcroft, J. E., Ullman, J. D., & Motwani, R. (2002). Introducción a la teoría de autómatas, lenguajes y computación.	Los examenes por escrito: valoran el nivel de argumentación en relación al hecho que se quiere demostrar. Manejo de lenguaje técnico, coherencia entre párrafos y global, redacción, ortografía y
4.	Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to NP-completeness.	presentación. Se utiliza una rúbrica para autoevaluación y heteroevaluación.
		Los problemas y las demostraciones: valoran el conocimiento teórico aplicado a la resolución de un ejercicio, debe contener el procedimiento y el resultado correcto. Se utiliza lista de cotejo para autoevaluación y heteroevaluación.
		Los programas computacionales: valoran la eficiencia del código y el conocimiento teórico aplicado para la programación del problema. Se utiliza una rúbrica para autoevaluación y heteroevaluación.
		La acreditación del curso:
		 Examen intermedio: 30% Examen final: 40% Proyecto final: 30%
		Y FORMA SE CALIFICAN CON CERO. Nota: la calificación mínima aprobatoria es de 80.

Unida	des de aprendizaje	1	2	3	4	5	6	7	8	9	10	1	1 2	1 3	1 4	1 5	16
I.	Lenguajes regulares y autómatas finitos.																
II.	Lenguajes independientes del contexto y autómatas de pila.																
III.	Decidibilidad.																