

Clave: 08MSU0017H

FACULTAD DE INGENIERÍA

Clave: 08USU4053W

PROGRAMA DEL CURSO:

HIDROLOGÍA DE LA ZONA NO SATURADA

DES:	Ingeniería					
Programa Educativo:	Doctorado en					
Frograma Educativo.	Ingeniería					
Tipo de materia	Optativa					
(Obligatoria/Optativa):	Οριαίίνα					
Clave de la materia:	OPT01					
Semestre:	N.A.					
Área en plan de estudios	RHYMA					
Créditos	6					
Total de horas por semana:	3					
Teoría: Presencial o Virtual						
Laboratorio o Taller:						
Prácticas:	1					
Trabajo extra-clase:	2					
Créditos Totales:	6					
Total de horas semestre (x 16 sem):	64					
Fecha de actualización:	2017					
Prerrequisito (s):	Ninguno					

Propósito del curso:

El alumno conoce las componentes de la zona no saturada, así como los procesos físicos que intervienen en el movimiento de los fluidos y de los solutos. Dimensiona las componentes del potencial total de agua en el suelo e identifica los factores que afectan a la recarga de agua subterránea.

COMPETENCIAS	DOMINIOS COGNITIVOS	RESULTADOS DE APRENDIZAJE
	1. Fase sólida de suelos 1.1 Fases de suelos 1.2 Procesos formadores de suelo 1.3 Características de las partículas primarias 2. Retención de agua en suelo y potencial	El alumno identifica y explica los procesos
CG 2. Gestión del conocimiento.	2.1 Propiedades del agua en el suelo 2.2 Propiedades del agua en las interfaces de aire y suelo 2.3 Contenido de humedad	de formación del suelo y los elementos participantes.
	3. Flujo Estacionario de agua en el suelo 3.1 Flujo de agua en tubos capilares 3.2 Flujo de agua en suelos saturados 3.3 Flujo de agua en suelos no saturados	 El alumno identifica las características del suelo y del agua que los hacen formar el sistema suelo-agua y las capacidades de este.
	 3.4 Medición de las propiedades hidráulicas 4. Régimen térmico-aireación de suelos 4.1 Balance de energía en la atmósfera 	• El alumno reconoce las propiedades del fluido y del suelo que permiten se integren y funcionen según la condición gobernante.
	4.2 Flujo estacionario de calor en el suelo4.3 Flujo transitorio de calor en el suelo4.4 Flujo transitorio de agua en el suelo4.5 Flujo transitorio de agua en el suelo	

OBJETO DE APRENDIZAJE	METODOLOGIA	EVIDENCIAS DE APRENDIZAJE
Fase sólida en los suelos Retención de agua en suelo y potencial Flujo estacionario de agua en suelo Régimen término aireación de suelos Flujo transitorio de agua en suelo	Estrategias 1. Exposición frente a grupo 2. Dinámicas grupales 3. Visitas de campo Métodos complementarios Trabajo de equipo en la elaboración de tareas, planeación. Debates dirigidos para encontrar lasolución óptima	Participación en solución de problemas en el grupo. Tareas de problemas resueltos Presentación y discusión de casos y lecturas asignadas. Presentación de casos investigados. Examen escrito.

FUENTES DE INFORMACIÓN	EVALUACIÓN DE LOS APRENDIZAJES							
Jury, W.A., W.R. Gardner, and W.H. Gardner, 1991,	Se toma en cuenta para integrar calificaciones parciales:							
Soil Physics. Jhon Wiley and Sons, Inc.	3 exámenes parciales escritos donde se evalúa conocimientos, comprensión y							
Koorevar, P., G. Menelik, and C. Dirksen, 1991,	aplicación. Con un valor del 30%, 30% y 40% respectivamente.							
Elements of Soil Physics. Elsevier.	La acreditación del curso se integra:							
Birkeland, P.W., 1984, Soils and Geomorphology.	o Exámenes parciales: 60%							
Oxford University.	o Reportes visitas campo, Tareas: 20%.							
Simmers, Ian., J.M.H. Hendrickx, G.P. Kruseman, and	o Elaboración de proyecto: 20%							
K.R. Ruhton, 1997, Recharge of phreatic aquifers	Nota:							
in (semi) arid areas. A.A.	Para acreditar el curso se deberá tener calificación aprobatoria tanto en la teoría como							
Balkema/Rotterdam/Brookfield.	en las prácticas. La calificación mínima aprobatoria será de 8.0							

Cronograma del Avance Programático

Unidades de aprendizaje	Semanas															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1. Fase sólida en los suelos																
2. Retención de agua en suelo y potencial																
3. Flujo estacionario de agua en suelo																
4. Régimen término aireación de suelos																
4. Fujo transitorio de agua en suelo								·								